Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=y(x) is the solution curve of the differential equation (d y/d x)+y tan x=x sec x, 0 ≤ x ≤ (π/3), y(0)=1 then y((π/6)) is equal to
Q. If
y
=
y
(
x
)
is the solution curve of the differential equation
d
x
d
y
+
y
tan
x
=
x
sec
x
,
0
≤
x
≤
3
π
,
y
(
0
)
=
1
then
y
(
6
π
)
is equal to
1459
120
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
12
π
−
2
3
lo
g
e
(
e
3
2
)
100%
B
12
π
+
2
3
lo
g
e
(
e
3
2
)
0%
C
12
π
+
2
3
lo
g
e
(
e
2
3
)
0%
D
12
π
−
2
3
lo
g
e
(
e
2
3
)
0%
Solution:
Here I.F.
=
sec
x
Then solution of D.E :
y
(
sec
x
)
=
x
tan
x
−
ln
(
sec
x
)
+
c
Given
y
(
0
)
=
1
⇒
c
=
1
∴
y
(
sec
x
)
=
x
tan
x
−
ln
(
sec
x
)
+
1
At
x
=
6
π
,
y
=
12
π
+
2
3
ln
2
3
+
2
3