Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=y(x)$ is the solution curve of the differential equation $\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$ then $y\left(\frac{\pi}{6}\right)$ is equal to

JEE MainJEE Main 2023Differential Equations

Solution:

Here I.F. $=\sec x$
Then solution of D.E :
$y(\sec x)=x \tan x-\ln (\sec x)+c$
Given $y(0)=1 \Rightarrow c=1$
$\therefore y (\sec x )= x \tan x -\ln (\sec x )+1$
At $x =\frac{\pi}{6}, y =\frac{\pi}{12}+\frac{\sqrt{3}}{2} \ln \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}$