Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=xn log x+x(log x)n , then (dy/dx) is equal to
Q. If
y
=
x
n
l
o
g
x
+
x
(
l
o
g
x
)
n
, then
d
x
d
y
is equal to
1817
203
MHT CET
MHT CET 2008
Report Error
A
x
n
−
1
(
1
+
n
l
o
g
x
)
+
(
l
o
g
x
)
n
−
1
[
n
+
l
o
g
x
]
B
x
n
−
2
(
1
+
n
l
o
g
x
)
+
(
l
o
g
x
)
n
−
1
[
n
+
l
o
g
x
]
C
x
n
−
1
(
1
+
n
l
o
g
x
)
+
(
l
o
g
x
)
n
−
1
[
n
−
l
o
g
x
]
D
None of the above
Solution:
Given,
y
=
x
n
lo
g
x
+
x
(
lo
g
x
)
n
d
x
d
y
=
n
x
n
−
1
lo
g
x
+
x
n
⋅
x
1
+
x
n
(
lo
g
x
)
n
−
1
(
x
1
)
<
b
r
/
><
b
r
/
>
+
1
⋅
(
lo
g
x
)
n
=
x
n
−
1
(
1
+
n
lo
g
x
)
+
(
lo
g
x
)
n
−
1
[
n
+
lo
g
x
]