Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ y=x^{n}\,log\,x+x\left(log\,x\right)^{n} $ , then $ \frac{dy}{dx} $ is equal to

MHT CETMHT CET 2008

Solution:

Given, $y=x^{n} \log x+x(\log x)^{n}$
$\frac{d y}{d x}=n x^{n-1} \log x+x^{n} \cdot \frac{1}{x}+x n(\log x)^{n-1}\left(\frac{1}{x}\right)
+1 \cdot(\log x)^{n}$
$=x^{n-1}(1+n \log x)+(\log x)^{n-1}[n+\log x]$