Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = x + (1/x), x ≠ 0, then the equation (x2-3x+1)(x2-5x+1)=6x2 reduces to
Q. If
y
=
x
+
x
1
,
x
=
0
, then the equation
(
x
2
−
3
x
+
1
)
(
x
2
−
5
x
+
1
)
=
6
x
2
reduces to
3926
187
KEAM
KEAM 2012
Complex Numbers and Quadratic Equations
Report Error
A
y
2
−
8
y
+
7
=
0
B
y
2
+
8
y
+
7
=
0
C
y
2
−
8
y
−
9
=
0
D
y
2
−
8
y
+
9
=
0
E
y
2
−
7
y
+
13
=
0
Solution:
Given,
y
=
x
+
x
1
and
(
x
2
−
3
x
+
1
)
(
x
2
−
5
x
+
1
)
=
6
x
⇒
(
x
−
3
+
x
1
)
(
x
−
5
+
x
1
)
=
6
(
divide by
x
)
⇒
(
y
−
3
)
(
y
−
5
)
=
6
⇒
y
2
−
8
y
+
15
=
6
⇒
y
2
−
8
y
+
9
=
0