Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y = x + \frac{1}{x}, x \ne 0$, then the equation $\left(x^{2}-3x+1\right)\left(x^{2}-5x+1\right)=6x^{2}$ reduces to

KEAMKEAM 2012Complex Numbers and Quadratic Equations

Solution:

Given, $y=x+\frac{1}{x}$
and $\left(x^{2}-3 x+1\right)\left(x^{2}-5 x+1\right)=6 x$
$\Rightarrow \left(x-3+\frac{1}{x}\right)\left(x-5+\frac{1}{x}\right)=6 ($ divide by $x)$
$\Rightarrow (y-3)(y-5)=6$
$\Rightarrow y^{2}-8 y+15=6$
$\Rightarrow y^{2}-8 y+9=0$