Given that, y=tan−1(1+sinxcosx) =tan−1(sin22x+cos22x+2sin2x.cos2xcos22x−sin22x) =tan−1((cos2x+sin2x)2(cos2x−sin2x)(cos2x+sin2x)) =tan−1(cos2x+sin2xcos2x−sin2x) =tan−1(1+tan2x1−tan2x) =tan−1(tan(4π−2x)) =4π−2x ∴y=4π−2x
Differentiating it w.r.t., x we get dxdy=−21