Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ y={{\tan }^{-1}}\left( \frac{\cos x}{1+\sin x} \right), $ then $ \frac{dy}{dx} $ is equal to

KEAMKEAM 2010Continuity and Differentiability

Solution:

Given that, $ y={{\tan }^{-1}}\left( \frac{\cos x}{1+\sin x} \right) $
$={{\tan }^{-1}}\left( \frac{{{\cos }^{2}}\frac{x}{2}-{{\sin }^{2}}\frac{x}{2}}{{{\sin }^{2}}\frac{x}{2}+{{\cos }^{2}}\frac{x}{2}+2\sin \frac{x}{2}.\cos \frac{x}{2}} \right) $
$={{\tan }^{-1}}\left( \frac{\left( \cos \frac{x}{2}-\sin \frac{x}{2} \right)\left( \cos \frac{x}{2}+\sin \frac{x}{2} \right)}{{{\left( \cos \frac{x}{2}+\sin \frac{x}{2} \right)}^{2}}} \right) $
$={{\tan }^{-1}}\left( \frac{\cos \frac{x}{2}-\sin \frac{x}{2}}{\cos \frac{x}{2}+\sin \frac{x}{2}} \right) $
$={{\tan }^{-1}}\left( \frac{1-\tan \frac{x}{2}}{1+\tan \frac{x}{2}} \right) $
$={{\tan }^{-1}}\left( \tan \left( \frac{\pi }{4}-\frac{x}{2} \right) \right) $
$=\frac{\pi }{4}-\frac{x}{2} $
$ \therefore $ $ y=\frac{\pi }{4}-\frac{x}{2} $
Differentiating it w.r.t., $ x $ we get $ \frac{dy}{dx}=-\frac{1}{2} $