Q.
If y=secx−tanxsecx+tanx, then dxdy is equal to
1755
194
Rajasthan PETRajasthan PET 2004
Report Error
Solution:
y=secx−tanxsecx+tanx ⇒y=secx−tanxsecx+tanx×secx+tanxsecx+tanx ⇒y=sec2x−tan2x(secx+tanx)2 ⇒y=1(secx+tanx)2
On differentiating with respect to x, dxdy=2(secx+tanx)(secxtanx+sec2x) =2(secx+tanx)secx(tanx+secx) =2secx(secx+tanx)2