Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ y=\frac{\sec x+\tan x}{\sec x-\tan x}, $ then $ \frac{dy}{dx} $ is equal to

Rajasthan PETRajasthan PET 2004

Solution:

$ y=\frac{\sec x+\tan x}{\sec x-\tan x} $
$ \Rightarrow $ $ y=\frac{\sec x+\tan x}{\sec x-\tan x}\times \frac{\sec x+\tan x}{\sec x+\tan x} $
$ \Rightarrow $ $ y=\frac{{{(\sec x+\tan x)}^{2}}}{{{\sec }^{2}}x-{{\tan }^{2}}x} $
$ \Rightarrow $ $ y=\frac{{{(\sec x+\tan x)}^{2}}}{1} $
On differentiating with respect to $ x, $
$ \frac{dy}{dx}=2(\sec x+\tan x)(\sec x\tan x+{{\sec }^{2}}x) $
$ =2(\sec x+\tan x)\sec x(\tan x+\sec x) $
$ =2\sec x{{(\sec x+\tan x)}^{2}} $