Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y = log sin x ( tan x), then (dy/dx)π/4 =
Q. If
y
=
lo
g
s
i
n
x
(
tan
x
)
,
then
(
d
y
/
d
x
)
π
/
4
=
2304
200
Limits and Derivatives
Report Error
A
4/
lo
g
2
33%
B
−
4/
lo
g
2
27%
C
−
4/
(
lo
g
2
)
31%
D
None of these.
10%
Solution:
y
=
l
o
g
s
i
n
x
l
o
g
t
a
n
x
⇒
d
x
d
y
=
(
l
o
g
s
i
n
x
)
2
l
o
g
(
t
a
n
x
)
.
s
i
n
x
1
.
c
o
s
x
−
l
o
g
(
s
i
n
x
)
.
t
a
n
x
1
.
s
i
n
2
x
At
x
=
4
x
d
x
d
y
=
lo
g
(
1
)
.1
−
lo
g
(
(
l
o
g
(
2
1
)
)
2
2
1
.2
)
=
4
1
(
l
o
g
2
)
2
2
2
l
o
g
2
=
l
o
g
2
4