Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y =\log_{\sin x } \left(\tan x\right),$ then $\left(dy/dx\right)\pi/{4} = $

Limits and Derivatives

Solution:

$y =\frac{\log\tan x}{\log\sin x} \Rightarrow \frac{dy}{dx}$
$ = \frac{\log\left(\tan x\right) . \frac{1}{\sin x}.\cos x -\log\left(\sin x\right). \frac{1}{\tan x}. \sin^{2}x}{\left(\log\sin x\right)^{2}} $
At $x = \frac{x}{4} $
$\frac{dy}{dx} =\log\left(1\right) .1 -\log \left(\frac{\frac{1}{\sqrt{2}}. 2}{\left(\log \left(\frac{1}{\sqrt{2}}\right)\right)^{2}}\right)$
$= \frac{\frac{2}{2} \log2}{\frac{1}{4} \left(\log2\right)^{2}} = \frac{4}{\log2}$