Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=( log e x/x) and z= log e x, then (d2 y/d z2)+(d y/d z) is equal to
Q. If
y
=
x
l
o
g
e
x
and
z
=
lo
g
e
x
, then
d
z
2
d
2
y
+
d
z
d
y
is equal to
1486
225
EAMCET
EAMCET 2011
Report Error
A
e
−
z
B
2
e
−
z
C
z
e
−
z
D
−
e
−
z
Solution:
Given,
y
=
x
l
o
g
e
x
and
z
=
lo
g
e
x
∴
y
=
e
z
z
On differentiating w.r.t.
z
, we get
d
z
d
y
=
e
2
z
e
z
(
1
)
−
z
e
z
=
e
z
1
−
z
Again differentiating, we get
d
z
2
d
2
y
=
e
2
z
e
z
(
−
1
)
−
(
1
−
z
)
e
z
=
e
z
−
2
+
z
∴
d
z
2
d
2
y
+
d
z
d
y
=
e
z
1
−
z
+
e
z
−
2
+
z
=
−
e
z
1
=
−
e
−
z