Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=\frac{\log _{e} x}{x}$ and $z=\log _{e} x$, then $\frac{d^{2} y}{d z^{2}}+\frac{d y}{d z}$ is equal to

EAMCETEAMCET 2011

Solution:

Given, $y=\frac{\log _{e} x}{x}$ and $z=\log _{e} x$
$\therefore y=\frac{z}{e^{z}}$
On differentiating w.r.t. $z$, we get
$\frac{d y}{d z}=\frac{e^{z}(1)-z e^{z}}{e^{2 z}}=\frac{1-z}{e^{z}}$
Again differentiating, we get
$\frac{d^{2} y}{d z^{2}} =\frac{e^{z}(-1)-(1-z) e^{z}}{e^{2 z}} $
$=\frac{-2+z}{e^{z}}$
$\therefore \frac{d^{2} y}{d z^{2}}+\frac{d y}{d z}=\frac{1-z}{e^{z}}+\frac{-2+z}{e^{z}}=-\frac{1}{e^{z}}=-e^{-z}$