Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=∫ limitsu(x)v(x) f(t) d t, let us define (d y/d x) in a different manner as (d y/d x)=v prime(x) f2(v(x))-u prime(x) f2(u(x)) and the equation of the tangent at (a, b) as y-b=((d y/d x))(a, b)(x-a) If y=∫ limitsxx2 t2 d t, then equation of tangent at x=1 is
Q. If
y
=
u
(
x
)
∫
v
(
x
)
f
(
t
)
d
t
, let us define
d
x
d
y
in a different manner as
d
x
d
y
=
v
′
(
x
)
f
2
(
v
(
x
))
−
u
′
(
x
)
f
2
(
u
(
x
))
and the equation of the tangent at
(
a
,
b
)
as
y
−
b
=
(
d
x
d
y
)
(
a
,
b
)
(
x
−
a
)
If
y
=
x
∫
x
2
t
2
d
t
, then equation of tangent at
x
=
1
is
179
161
Integrals
Report Error
A
y
=
x
+
1
B
x
+
y
=
1
C
y
=
x
−
1
D
y
=
x
Solution:
At
x
=
1
,
y
=
0
d
x
d
y
=
2
x
⋅
x
8
−
x
4
=
2
−
1
=
1
∴
equation of tangent
y
−
0
=
1
(
x
−
1
)
y
=
x
−
1