Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=\int\limits_{u(x)}^{v(x)} f(t) d t$, let us define $\frac{d y}{d x}$ in a different manner as $\frac{d y}{d x}=v^{\prime}(x) f^2(v(x))-u^{\prime}(x) f^2(u(x))$ and the equation of the tangent at $(a, b)$ as $y-b=\left(\frac{d y}{d x}\right)_{(a, b)}(x-a)$
If $y=\int\limits_x^{x^2} t^2 d t$, then equation of tangent at $x=1$ is

Integrals

Solution:

At $x=1, y=0$
$\frac{d y}{d x}=2 x \cdot x^8-x^4=2-1=1$
$\therefore $ equation of tangent $y-0=1(x-1)$
$ y=x-1$