Q.
If $y=\int\limits_{u(x)}^{v(x)} f(t) d t$, let us define $\frac{d y}{d x}$ in a different manner as $\frac{d y}{d x}=v^{\prime}(x) f^2(v(x))-u^{\prime}(x) f^2(u(x))$ and the equation of the tangent at $(a, b)$ as $y-b=\left(\frac{d y}{d x}\right)_{(a, b)}(x-a)$
If $y=\int\limits_x^{x^2} t^2 d t$, then equation of tangent at $x=1$ is
Integrals
Solution: