Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=ex.ex2.ex3.....exn...., for 0 < x < 1, then (dy/dx) at x=(1/2) is
Q. If
y
=
e
x
.
e
x
2
.
e
x
3
.....
e
x
n
....
,
for
0
<
x
<
1
,
then
d
x
d
y
at
x
=
2
1
is
4324
177
KEAM
KEAM 2009
Continuity and Differentiability
Report Error
A
e
10%
B
4e
57%
C
2e
15%
D
3e
11%
E
5e
11%
Solution:
Given,
y
=
e
x
.
e
x
2
.
e
x
3
.....
e
x
n
.....
⇒
y
=
e
(
x
+
x
2
+
....
+
∞
)
⇒
y
=
e
1
−
x
x
⇒
d
x
d
y
=
e
1
−
x
x
[
(
1
−
x
)
2
(
1
−
x
)
1
−
x
(
−
1
)
]
=
e
1
−
x
x
.
(
1
−
x
)
2
1
At
x
=
2
1
,
(
d
x
d
y
)
x
=
2
1
=
e
1
−
2
1
2
1
.
(
1
−
2
1
)
2
1
=
4
e