Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $ y={{e}^{x}}.{{e}^{{{x}^{2}}}}.{{e}^{{{x}^{3}}}}.....{{e}^{{{x}^{n}}}}...., $ for $ 0 < x < 1, $ then $ \frac{dy}{dx} $ at $ x=\frac{1}{2} $ is

KEAMKEAM 2009Continuity and Differentiability

Solution:

Given, $ y={{e}^{x}}.{{e}^{{{x}^{2}}}}.{{e}^{{{x}^{3}}}}.....{{e}^{{{x}^{n}}}}..... $
$ \Rightarrow $ $ y={{e}^{(x+{{x}^{2}}+....+\infty )}} $
$ \Rightarrow $ $ y={{e}^{\frac{x}{1-x}}} $
$ \Rightarrow $ $ \frac{dy}{dx}={{e}^{\frac{x}{1-x}}}\left[ \frac{(1-x)1-x(-1)}{{{(1-x)}^{2}}} \right] $
$={{e}^{\frac{x}{1-x}}}.\frac{1}{{{(1-x)}^{2}}} $ At $ x=\frac{1}{2}, $ $ {{\left( \frac{dy}{dx} \right)}_{x=\frac{1}{2}}}={{e}^{\frac{\frac{1}{2}}{1-\frac{1}{2}}}}.\frac{1}{{{\left( 1-\frac{1}{2} \right)}^{2}}} $
$=4e $