Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y= textCosec-1(x) and (d y/d x)=(-1/|x| √x2-1), then
Q. If
y
=
Cosec
−
1
(
x
)
and
d
x
d
y
=
∣
x
∣
x
2
−
1
−
1
, then
1942
215
AP EAMCET
AP EAMCET 2020
Report Error
A
y
∈
(
−
2
π
,
0
)
B
y
∈
(
−
2
π
,
2
π
)
C
y
∈
(
−
2
π
,
0
)
∪
(
0
,
2
π
)
D
y
∈
R
Solution:
It is given that,
y
=
cosec
−
1
x
and
d
x
d
y
=
∣
x
∣
x
2
−
1
−
1
∵
Domain of
cosec
−
1
x
is
[
−
2
π
,
2
π
]
−
{
0
}
and the
d
x
d
y
is define for
x
∈
(
−
2
π
,
0
)
∪
(
0
,
2
π
)
.
Because for derivatives we should exclude the end points of a internal.