Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=\text{Cosec}^{-1}(x)$ and $\frac{d y}{d x}=\frac{-1}{|x| \sqrt{x^{2}-1}}$, then

AP EAMCETAP EAMCET 2020

Solution:

It is given that, $y=\text{cosec}^{-1} x$
and $\frac{d y}{d x}=\frac{-1}{|x| \sqrt{x^{2}-1}}$
$\because$ Domain of $\text{cosec}^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
and the $\frac{d y}{d x}$ is define for $x \in\left(-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right)$.
Because for derivatives we should exclude the end points of a internal.