Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If y=(1/1+x+x2), then (dy/dx) is equal to
Q. If
y
=
1
+
x
+
x
2
1
, then
d
x
d
y
is equal to
3795
239
KEAM
KEAM 2013
Limits and Derivatives
Report Error
A
y
2
(
1
+
2
x
)
15%
B
y
2
−
(
1
+
2
x
)
18%
C
2
(
1
+
2
x
)
18%
D
−
y
(
1
+
2
x
)
15%
E
−
y
2
(
1
+
2
x
)
15%
Solution:
Given,
y
=
1
+
x
+
x
2
1
⇒
1
+
x
+
x
2
=
y
1
On differentiating w.r.t.
x
, we get
0
+
1
+
2
x
=
−
y
2
1
d
x
d
y
⇒
d
x
d
y
=
−
(
1
+
2
x
)
y
2