Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $y=\frac{1}{1+x+x^{2}}$, then $\frac{dy}{dx}$ is equal to

KEAMKEAM 2013Limits and Derivatives

Solution:

Given, $y=\frac{1}{1+x+x^{2}} $
$\Rightarrow \, 1+x+x^{2}=\frac{1}{y}$
On differentiating w.r.t. $x$, we get
$ 0+1+2 x=-\frac{1}{y^{2}}\, \frac{d y}{d x}$
$\Rightarrow \, \frac{d y}{d x} =-(1+2 x) y^{2}$