Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x = sec θ - cos θ, y = secn θ - cosn θ , then (x2 + 4) ( (dy/dx) )2 is equal to
Q. If
x
=
sec
θ
−
cos
θ
,
y
=
sec
n
θ
−
cos
n
θ
, then
(
x
2
+
4
)
(
d
x
d
y
)
2
is equal to
4672
210
VITEEE
VITEEE 2010
Continuity and Differentiability
Report Error
A
n
2
(
y
2
−
4
)
8%
B
n
2
(
4
−
y
2
)
33%
C
n
2
(
y
2
+
4
)
37%
D
N
o
n
e
o
f
t
h
ese
23%
Solution:
x
=
sec
θ
−
cos
θ
⇒
d
θ
d
x
=
sec
θ
tan
θ
+
sin
θ
,
y
=
sec
n
θ
−
cos
n
θ
⇒
d
θ
d
y
=
n
sec
n
−
1
θ
sec
θ
tan
θ
+
n
cos
n
−
1
θ
sin
θ
∴
d
x
d
y
=
n
(
s
e
c
θ
t
a
n
θ
+
s
i
n
θ
)
(
s
e
c
n
θ
t
a
n
θ
+
c
o
s
n
−
1
θ
s
i
n
θ
)
⇒
d
x
d
y
=
n
(
s
e
c
θ
+
c
o
s
θ
)
t
a
n
θ
(
s
e
c
n
θ
+
c
o
s
n
θ
)
t
a
n
θ
⇒
d
x
d
y
=
(
s
e
c
θ
+
c
o
s
θ
)
n
(
s
e
c
n
θ
+
c
o
s
n
θ
)
⇒
(
d
x
d
y
)
2
=
(
s
e
c
θ
−
c
o
s
θ
)
2
+
4
n
2
{
(
s
e
c
n
θ
−
c
o
s
n
θ
)
2
+
4
}
⇒
(
d
x
d
y
)
2
=
x
2
+
4
n
2
(
y
2
+
4
)
⇒
(
x
2
+
4
)
(
d
x
d
y
)
2
=
n
2
(
y
2
+
4
)