Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If x=secθcosθ,y=secnθcosnθ, then (x2+4)(dydx)2 is equal to

VITEEEVITEEE 2010Continuity and Differentiability

Solution:

x=secθcosθ
dxdθ=secθtanθ+sinθ,
y=secnθcosnθ
dydθ=nsecn1θsecθtanθ+ncosn1θsinθ

\Rightarrow \frac{d y}{d x}=n \frac{\left(\sec ^{n} \theta+\cos ^{n} \theta\right) \tan \theta}{(\sec \theta+\cos \theta) \tan \theta}
\Rightarrow \frac{d y}{d x}=\frac{n\left(\sec ^{n} \theta+\cos ^{n} \theta\right)}{(\sec \theta+\cos \theta)}
\Rightarrow \left(\frac{d y}{d x}\right)^{2}=\frac{n^{2}\left\{\left(\sec ^{n} \theta-\cos ^{n} \theta\right)^{2}+4\right\}}{(\sec \theta-\cos \theta)^{2}+4}
\Rightarrow \left(\frac{d y}{d x}\right)^{2}=\frac{n^{2}\left(y^{2}+4\right)}{x^{2}+4}
\Rightarrow \left(x^{2}+4\right)\left(\frac{d y}{d x}\right)^{2}=n^{2}\left(y^{2}+4\right)