Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x satisfies the equation (∫ limits01 (d t/t2+2 t cos α+1)) x2-(∫ limits-33 (t2 sin 2 t/t2+1) d t) x-2=0(0< α< π), then the value x is
Q. If
x
satisfies the equation
(
0
∫
1
t
2
+
2
t
c
o
s
α
+
1
d
t
)
x
2
−
(
−
3
∫
3
t
2
+
1
t
2
s
i
n
2
t
d
t
)
x
−
2
=
0
(
0
<
α
<
π
)
, then the value
x
is
198
126
Integrals
Report Error
A
±
2
s
i
n
α
α
B
±
α
2
s
i
n
α
C
±
s
i
n
α
α
D
±
2
α
s
i
n
α
Solution:
−
3
∫
3
t
2
+
1
t
2
s
i
n
2
t
d
t
=
0
as the integrand is an odd function.
also
0
∫
1
t
2
+
2
t
c
o
s
α
+
1
d
t
=
s
i
n
α
1
tan
−
1
s
i
n
α
t
+
c
o
s
α
∣
∣
0
1
=
2
s
i
n
α
α
Thus the given equation reduces to
x
2
2
s
i
n
α
α
−
2
=
0
⇒
x
=
±
2
α
s
i
n
α