Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x$ satisfies the equation $\left(\int\limits_0^1 \frac{d t}{t^2+2 t \cos \alpha+1}\right) x^2-\left(\int\limits_{-3}^3 \frac{t^2 \sin 2 t}{t^2+1} d t\right) x-2=0(0< \alpha< \pi)$, then the value $x$ is

Integrals

Solution:

$\int\limits_{-3}^3 \frac{t^2 \sin 2 t}{t^2+1} d t=0$ as the integrand is an odd function.
also $\int\limits_0^1 \frac{ dt }{ t ^2+2 t \cos \alpha+1}=\left.\frac{1}{\sin \alpha} \tan ^{-1} \frac{ t +\cos \alpha}{\sin \alpha}\right|_0 ^1=\frac{\alpha}{2 \sin \alpha}$
Thus the given equation reduces to
$x ^2 \frac{\alpha}{2 \sin \alpha}-2=0 \Rightarrow x = \pm 2 \sqrt{\frac{\sin \alpha}{\alpha}} $