Given: ∣∣xnynznxn+2yn+2zn+2xn+3yn+3zn+3∣∣ =(x−y)(y−z)(z−x)[x1+y1+z1]
Let A=∣∣xnynznxn+2yn+2zn+2xn+3yn+3zn+3∣∣
Take xn,yn and zn common from the rows R1,R2 and R3 respectively.
A=xnynzn∣∣111x2y2z2x3y3z3∣∣
Operate R2→R2−R1 and R3→R3−R1 A=xnynzn∣∣100x2y2−x2z2−x2x3y3−x3z3−x3∣∣
Take (y - x) (z - x) common from the rows R2 and R3 respectively:
Then we get A=xnynzn(y−x)(z−x) ∣∣100x2y+xz+xx3x2+y2+xyz2+x2+zx∣∣ =xnynzn(y−x)(z−x)[yz2+x2y+xyz+xz2+x3+x2z−x2z−y2z−xyz−x3−xy2−x2y] =xnynzn(x−y)(y−z)(z−x)[xy+yz+zx] =[xn+1yn+1zn+xnyn+1zn+1+xn+1ynzn+1] (x−y)(y−z)(z−x) =xn+1.yn+1.zn+1(x−y)(y−z)(z−x) [x1+y1+z1]
But given A=(y−z)(z−x)(x−y)[x1+y1+z1]
So, xn+1yn+1zn+1=1=x0y0z0 ⇒n+1=0⇒n=−1.