Q. If $\begin{vmatrix}x^{n}&x^{n+2}&x^{n+3}\\ y^{n} &y^{n+2}&y^{n+3}\\ z^{n} &z^{n+2}&z^{n+3}\end{vmatrix} = (y - z) (z - x) (x - y) \left( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right)$ then n is equal to :
Determinants
Solution: