Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x ∈((π/2), π), then ( sec x-1/sec x+1) if equal to
Q. If
x
∈
(
2
π
,
π
)
, then
sec
x
+
1
sec
x
−
1
if equal to
1775
207
KEAM
KEAM 2012
Report Error
A
(
cosec
x
+
co
t
x
)
2
B
(
sin
x
−
cos
x
)
2
C
(
cosec
x
−
co
t
x
)
2
D
(
sec
x
+
t
an
x
)
2
E
(
sec
x
−
t
an
x
)
2
Solution:
Given,
x
∈
(
2
π
,
π
)
∴
s
e
c
x
+
1
s
e
c
x
−
1
=
c
o
s
x
1
+
1
c
o
s
x
1
−
1
=
1
+
c
o
s
x
1
−
c
o
s
x
×
1
−
c
o
s
x
1
−
c
o
s
x
=
1
−
c
o
s
2
x
1
2
−
2
c
o
s
x
+
c
o
s
2
x
=
s
i
n
2
x
1
−
2
c
o
s
x
+
c
o
s
2
x
=
cosec
2
x
−
2
cot
x
cosec
x
+
cot
2
x
=
(
cosec
x
−
cot
x
)
2