Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x \in\left(\frac{\pi}{2}, \pi\right)$, then $\frac{ sec \,x-1}{sec\, x+1}$ if equal to

KEAMKEAM 2012

Solution:

Given, $ x \in\left(\frac{\pi}{2}, \pi\right)$
$ \therefore \frac{\sec x-1}{\sec x+1}=\frac{\frac{1}{\cos x}-1}{\frac{1}{\cos x}+1} $
$= \frac{1-\cos x}{1+\cos x} \times \frac{1-\cos x}{1-\cos x} $
$= \frac{1^{2}-2 \cos x+\cos ^{2} x}{1-\cos ^{2} x} $
$= \frac{1-2 \cos x+\cos ^{2} x}{\sin ^{2} x} $
$= \operatorname{cosec}^{2} x-2 \cot x \operatorname{cosec} x+\cot ^{2} x $
$=(\operatorname{cosec} x-\cot x)^{2}$