Given, x=asin−1t
and y=acos−1t
On multiplying Eqs. (i) and (ii), we get xy=asin−1t×acos−1t ⇒xy=asin−1t⋅acos−1t =a(sin−1t+cos−1t) (∵sin−1x+cos−1x=2π) ⇒xy=aπ/12
On differentiating w.r.t. x, we get xdxdy+y=0 ⇒xdxdy=−y ⇒dxdy=x−y ∴dxd (constant )=0