Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x=\sqrt{a^{\sin ^{-1}} t}$, and $y=\sqrt{a^{\cos ^{-1}} t}$, then the value of $\frac{d y}{d x}$ is

Bihar CECEBihar CECE 2013

Solution:

Given, $x=\sqrt{a^{\sin ^{-1} t}}$
and $y=\sqrt{a^{\cos ^{-1} t}}$
On multiplying Eqs. (i) and (ii), we get
$x y=\sqrt{a^{\sin ^{-1} t}} \times \sqrt{a^{\cos ^{-1} t}}$
$\Rightarrow x y =\sqrt{a^{\sin ^{-1} t} \cdot a^{\cos ^{-1} t}} $
$ =\sqrt{a^{\left(\sin ^{-1} t+\cos ^{-1} t\right)}} $
$ \left(\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right) $
$ \Rightarrow x y=\sqrt{a^{\pi / 12}}$
On differentiating w.r.t. $x$, we get
$x \frac{d y}{d x}+y=0 $
$\Rightarrow x \frac{d y}{d x}=-y $
$ \Rightarrow \frac{d y}{d x}=\frac{-y}{x}$
$\therefore \frac{d}{d x}$ (constant $)=0$