Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2+y2=14 x y and 2 log (k(x+y))=( log x+ log y), then the value of k is
Q. If
x
2
+
y
2
=
14
x
y
and
2
lo
g
(
k
(
x
+
y
))
=
(
lo
g
x
+
lo
g
y
)
, then the value of
k
is
80
114
Continuity and Differentiability
Report Error
A
16
1
B
4
1
C
2
lo
g
2
D
2
l
o
g
14
Solution:
Given
2
lo
g
(
k
(
x
+
y
))
=
(
lo
g
x
+
lo
g
y
)
⇒
(
k
(
x
+
y
)
)
2
=
x
y
∴
k
2
(
x
2
+
y
2
+
2
x
y
)
=
x
y
⇒
k
2
(
14
x
y
+
2
x
y
)
=
x
y
∴
k
2
=
16
1
⇒
k
=
4
1