Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $x^2+y^2=14 x y$ and $2 \log (k(x+y))=(\log x+\log y)$, then the value of $k$ is

Continuity and Differentiability

Solution:

Given $ 2 \log (k(x+y))=(\log x+\log y) $
$\Rightarrow (k(x+y))^2=x y $
$\therefore k^2\left(x^2+y^2+2 x y\right)=x y$
$\Rightarrow k^2(14 x y+2 x y)=x y$
$\therefore k^2=\frac{1}{16} \Rightarrow k=\frac{1}{4} $