Let α be the common root for both the equations x2+ax+10=0 and x2+bx−10=0∴α2+aα+10=0 ...(i) and α2+bα−10=0 ...(ii) From Eqs. (i) and (ii), we get (a−b)α+10+10=0⇒(a−b)α=−20⇒α=a−b−20∵α is also the root of x2+bx−10=0∴(a−b)2400+b(a−b−20)−10=040−2b(a−b)=(a−b)2⇒a2+b2−2b2=40⇒a2−b2=40