Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2+ax+10=0 and x2+bx-10=0 have a common root, then a2-b2 is equal to:
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $ {{x}^{2}}+ax+10=0 $ and $ {{x}^{2}}+bx-10=0 $ have a common root, then $ {{a}^{2}}-{{b}^{2}} $ is equal to:
KEAM
KEAM 2002
A
10
B
20
C
30
D
40
E
50
Solution:
Let $ \alpha $ be the common root for both the equations $ {{x}^{2}}+ax+10=0 $ and $ {{x}^{2}}+bx-10=0 $ $ \therefore $ $ {{\alpha }^{2}}+a\alpha +10=0 $ ...(i) and $ {{\alpha }^{2}}+b\alpha -10=0 $ ...(ii) From Eqs. (i) and (ii), we get $ (a-b)\alpha +10+10=0 $ $ \Rightarrow $ $ (a-b)\alpha =-20 $ $ \Rightarrow $ $ \alpha =\frac{-20}{a-b} $ $ \because $ $ \alpha $ is also the root of $ {{x}^{2}}+bx-10=0 $ $ \therefore $ $ \frac{400}{{{(a-b)}^{2}}}+b\left( \frac{-20}{a-b} \right)-10=0 $ $ 40-2b(a-b)={{(a-b)}^{2}} $ $ \Rightarrow $ $ {{a}^{2}}+{{b}^{2}}-2{{b}^{2}}=40 $ $ \Rightarrow $ $ {{a}^{2}}-{{b}^{2}}=40 $