Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If x2 +2xy +2y2 = 1, then (dy/dx) at the point where y = 1 is equal to
Q. If
x
2
+
2
x
y
+
2
y
2
=
1
,
then
d
x
d
y
at the point where
y
=
1
is equal to
2092
190
KEAM
KEAM 2012
Continuity and Differentiability
Report Error
A
1
7%
B
2
12%
C
-1
11%
D
-2
8%
E
0
8%
Solution:
Given,
x
2
+
2
x
y
+
2
y
2
=
1
⋯
Put
y
=
1
,
x
2
+
2
x
(
1
)
+
2
(
1
)
2
=
1
⇒
x
2
+
2
x
+
1
=
0
⇒
(
x
+
1
)
2
0
⇒
x
=
−
1
On differentiating Eq. (i) w.r.t.
x
, we get
2
x
+
2
x
d
x
d
y
+
2
y
+
4
y
d
x
d
y
=
0
⇒
2
d
x
d
y
(
x
+
2
y
)
=
−
2
(
y
+
x
)
⇒
d
x
d
y
=
x
+
2
y
−
(
y
+
x
)
When
x
=
−
1
,
y
=
1
d
x
d
y
=
−
−
1
+
2
(
1
−
1
)
=
0