Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If x2+2xy+2y2=1, then dydx at the point where y=1 is equal to

KEAMKEAM 2012Continuity and Differentiability

Solution:

Given, x2+2xy+2y2=1
Put y=1,
x2+2x(1)+2(1)2=1
x2+2x+1=0
(x+1)20
x=1
On differentiating Eq. (i) w.r.t. x, we get
2x+2xdydx+2y+4ydydx=0
2dydx(x+2y)=2(y+x)
dydx=(y+x)x+2y
When x=1,y=1
dydx=(11)1+2=0