Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (x-2)100= displaystyle∑r=0100 ar ⋅ xr, then a1+2 a2+ ldots+100 a100=
Q. If
(
x
−
2
)
100
=
r
=
0
∑
100
a
r
⋅
x
r
,
then
a
1
+
2
a
2
+
…
+
100
a
100
=
2252
184
Binomial Theorem
Report Error
A
100
B
-100
C
1
D
101
Solution:
(
x
−
2
)
100
=
r
=
0
∑
100
a
r
⋅
x
r
Differentiating both sides w.r.t.
x
,
we get
100
(
x
−
2
)
99
=
r
=
0
∑
100
r
.
a
r
⋅
x
r
−
1
Putting
x
=
1
,
we get
100
(
1
−
2
)
99
=
a
1
+
2
a
2
+
…
+
100
a
100
∴
a
1
+
2
a
2
+
…
+
100
a
100
=
−
100