Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If (x-2)100= displaystyle∑r=0100 ar ⋅ xr, then a1+2 a2+ ldots+100 a100=
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If $(x-2)^{100}= \displaystyle\sum_{r=0}^{100} a_{r} \cdot x^{r},$ then $a_{1}+2 a_{2}+\ldots+100 a_{100}=$
Binomial Theorem
A
100
B
-100
C
1
D
101
Solution:
$(x-2)^{100}= \displaystyle\sum_{r=0}^{100} a_{r} \cdot x^{r}$
Differentiating both sides w.r.t. $x,$ we get
$100(x-2)^{99}= \displaystyle\sum_{r=0}^{100} r . a_{r} \cdot x^{r-1}$
Putting $x=1,$ we get
$ 100(1-2)^{99}=a_{1}+2 a_{2}+\ldots+100 a_{100} $
$\therefore a_{1}+2 a_{2}+\ldots+100 a_{100}=-100$