Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If V =2 veci+ vecj- k and W = i +3 k . If U is a unit vector, then the maximum value of the scalar triple product [ U V W ] is
Q. If
V
=
2
i
+
j
−
k
and
W
=
i
+
3
k
. If
U
is a unit vector, then the maximum value of the scalar triple product
[
U
V
W
]
is
1954
217
IIT JEE
IIT JEE 2002
Vector Algebra
Report Error
A
−
1
17%
B
10
+
6
24%
C
59
50%
D
60
9%
Solution:
Given,
V
=
2
i
^
+
j
^
−
k
^
and
w
=
i
^
+
3
k
^
[
U
V
W
]
=
U
⋅
[(
2
i
^
+
j
^
−
k
^
)
×
(
i
^
+
3
k
^
)]
=
U
⋅
(
3
i
^
−
7
j
^
−
k
^
)
=
∣
U
∣∣3
i
^
−
7
j
^
−
k
^
∣
cos
θ
which is maximum, if angle between
U
and
3
i
^
−
7
j
^
−
k
^
is
0
and maximum value
=
∣3
i
^
−
7
j
^
−
k
^
∣
=
59