Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. If $\overrightarrow{ V }=2 \vec{i}+\vec{j}-\overrightarrow{ k }$ and $\overrightarrow{ W }=\overrightarrow{ i }+3 \overrightarrow{ k }$. If $\overrightarrow{ U }$ is a unit vector, then the maximum value of the scalar triple product $[\overrightarrow{ U } \,\,\overrightarrow{ V } \,\,\overrightarrow{ W }]$ is

IIT JEEIIT JEE 2002Vector Algebra

Solution:

Given, $\overrightarrow{ V }=2 \hat{ i }+\hat{ j }-\hat{ k }$ and $\overrightarrow{ w }=\hat{ i }+3 \hat{ k }$
${[\overrightarrow{ U } \overrightarrow{ V } \overrightarrow{ W }] } =\overrightarrow{ U } \cdot[(2 \hat{ i }+\hat{ j }-\hat{ k }) \times(\hat{ i }+3 \hat{ k })] $
$=\overrightarrow{ U } \cdot(3 \hat{ i }-7 \hat{ j }-\hat{ k })=|\overrightarrow{ U }||3 \hat{ i }-7 \hat{ j }-\hat{ k }| \cos \theta$
which is maximum, if angle between $\vec{U}$ and $3 \hat{ i }-7 \hat{ j }-\hat{ k }$ is $0$ and maximum value
$=|3 \hat{ i }-7 \hat{ j }-\hat{ k }|=\sqrt{59}$