Let I=0∫∞1+x4x2+ax+1⋅tan−1(x1)dx
put x=1/t and adding we get (using tan−1(x)+cot−1x=π/2 ) I=4π0∫∞1+x4(x2+1)+axdx=4π[0∫∞1+x4(x2+1)dx+a0∫∞1+x4xdx]=4π[22π+4aπ]=[82π2+16π2a] ∴l=a→∞Lima1[82π2+16π2a]=a→∞Lim[(82)aπ2+16π2]=16π2⇒k=16