Q. If $\underset{ a \rightarrow \infty} {\text{Lim}} \frac{1}{ a } \int\limits_0^{\infty} \frac{ x ^2+ ax +1}{1+ x ^4} \cdot \tan ^{-1}\left(\frac{1}{ x }\right) dx$ is equal to $\frac{\pi^2}{ k }$ where $k \in N$ equals
Integrals
Solution: