Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the value of the integral ∫ limits05 (x+[x]/ex-[x]) d x=α e-1+β, where α, β ∈ R , 5 α+6 β=0, and [ x ] denotes the greatest integer less than or equal to x; then the value of (α+β)2 is equal to :
Q. If the value of the integral
0
∫
5
e
x
−
[
x
]
x
+
[
x
]
d
x
=
α
e
−
1
+
β
, where
α
,
β
∈
R
,
5
α
+
6
β
=
0
, and
[
x
]
denotes the greatest integer less than or equal to
x
; then the value of
(
α
+
β
)
2
is equal to :
3893
200
JEE Main
JEE Main 2021
Integrals
Report Error
A
100
0%
B
25
70%
C
16
9%
D
36
22%
Solution:
I
=
0
∫
5
e
x
−
[
x
]
x
+
[
x
]
d
x
0
∫
1
e
t
t
+
2
d
t
+
0
∫
1
e
z
z
+
4
d
z
+
…
..
+
0
∫
1
e
y
y
+
8
d
x
⇒
0
∫
5
e
x
5
x
+
20
d
t
=
5
0
∫
1
e
x
x
+
4
d
x
⇒
5
0
∫
1
(
x
+
4
)
e
−
x
d
x
⇒
5
e
−
x
(
−
x
−
5
)
∣
0
1
⇒
−
e
30
+
25
α
=
−
30
β
=
25
⇒
5
α
+
6
β
=
0
(
α
+
β
)
2
=
5
2
=
25