Q. If the value of the integral $\int\limits_{0}^{5} \frac{x+[x]}{e^{x-[x]}} d x=\alpha e^{-1}+\beta$, where $\alpha, \beta \in R , 5 \alpha+6 \beta=0$, and $[ x ]$ denotes the greatest integer less than or equal to $x$; then the value of $(\alpha+\beta)^{2}$ is equal to :
Solution: