Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum of the series 12 + 2.22 + 32 + 2.42 + 52+ ... 2.62 +... upto n terms, when n is even, is (n(n+1)2/2), then the sum of the series, when n is odd, is
Q. If the sum of the series
1
2
+
2.
2
2
+
3
2
+
2.
4
2
+
5
2
+
...2.
6
2
+
...
upto n terms, when n is even, is
2
n
(
n
+
1
)
2
, then the sum of the series, when n is odd, is
2431
203
AIEEE
AIEEE 2012
Sequences and Series
Report Error
A
n
2
(
n
+
1
)
B
2
n
2
(
n
−
1
)
C
2
n
2
(
n
+
1
)
D
n
2
(
n
−
1
)
Solution:
If n is odd, the required sum is
1
2
+
2.
2
2
+
3
2
+
2.
4
2
+
……
+
2
(
n
−
1
)
2
+
n
2
=
2
(
n
−
1
)
(
n
−
1
+
1
)
2
+
n
2
(
∵
n
−
1
is even)
=
(
2
n
−
1
+
1
)
n
2
=
2
n
2
(
n
+
1
)