According to question, we have np+npq=15 ⇒np(1+q)=15…(i)
and (np)2npq=117 ⇒n2p2(1+q2)=117…(ii)
Dividing the square of (i) by (ii), we get n2p2(1+q2)n2p2(1+p2)=11715×15 ⇒1+q21+2q+q2=1325 ⇒6q2−13q+6=0 ⇒(3q−2)(2q−3)=0 ⇒q=32, 23 but q=23(∵0≤q≤1) ∴q=32 ⇒p=1−q=1−32=31
From (i), we get n⋅31(1+21)=15 ⇒n⋅31.35=15 ⇒n=27
Hence, the binomial distribution is (q+p)n i.e. (32+31)27