Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum of the mean and variance of a binomial distribution is 15 and the sum of their squares is 117, then find the distribution.
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. If the sum of the mean and variance of a binomial distribution is $15$ and the sum of their squares is $117$, then find the distribution.
Probability - Part 2
A
$\left(\frac{2}{3}+\frac{1}{3}\right)^{25}$
67%
B
$\left(\frac{1}{2}+\frac{1}{2}\right)^{25}$
0%
C
$\left(\frac{1}{2}+\frac{1}{2}\right)^{27}$
33%
D
$\left(\frac{2}{3}+\frac{1}{3}\right)^{27}$
0%
Solution:
According to question, we have
$np + npq = 15$
$\Rightarrow np\left( 1 + q\right) = 15\quad\ldots\left(i\right)$
and $\left(np \right)^{2} npq = 117$
$\Rightarrow n^{2}p^{2}\left(1+q^{2} \right)= 117\quad\ldots\left(ii\right)$
Dividing the square of $\left(i\right)$ by $\left(ii\right)$, we get
$\frac{n^{2}p^{2}\left(1+p^{2}\right)}{n^{2}p^{2}\left(1+q^{2}\right)} = \frac{15\times15}{117}$
$\Rightarrow \frac{1+2q+q^{2}}{1+q^{2}} = \frac{25}{13}$
$\Rightarrow 6q^{2} - 13q + 6 = 0$
$\Rightarrow \left(3q - 2\right)\left(2q - 3\right) = 0$
$\Rightarrow q = \frac{2}{3}$, $\frac{3}{2}$ but $q \ne \frac{3}{2}\quad\left(\because 0 \le q \le 1\right)$
$\therefore q = \frac{2}{3}$
$\Rightarrow p = 1 - q = 1 -\frac{2}{3} = \frac{1}{3}$
From $\left(i\right)$, we get
$n\cdot\frac{1}{3}\left(1+\frac{1}{2}\right) = 15$
$\Rightarrow n\cdot\frac{1}{3} . \frac{5}{3}= 15$
$\Rightarrow n = 27$
Hence, the binomial distribution is $\left(q+p\right)^{n}$ i.e.
$\left(\frac{2}{3}+\frac{1}{3}\right)^{27}$