Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If the sum of the first 2n terms of the A.P. 2, 5, 8, ........... is equal to the sum of the first n terms of the A.P. 57, 59, 61, ........, then n equals
Q. If the sum of the first 2n terms of the A.P. 2, 5, 8, ........... is equal to the sum of the first n terms of the A.P. 57, 59, 61, ........, then n equals
742
117
Sequences and Series
Report Error
A
10
B
12
C
11
D
13
Solution:
2
,
5
,
8
,
……
.....
A
.
P
.
S
2
n
=
n
[
4
+
(
2
n
−
1
)
3
]
S
2
n
=
n
[
6
n
+
1
]
57
,
59
,
61
,
……
....
S
n
=
2
n
[
2
×
57
+
(
n
−
1
)
×
2
]
S
n
=
n
[
57
+
n
−
1
]
=
n
[
n
+
56
]
S
n
=
S
2
n
n
(
n
+
56
)
=
n
(
6
n
+
1
)
n
=
0
∴
n
+
56
=
6
n
+
1
5
n
=
55
∴
n
=
11